我们考虑载有X_ {t + 1} = \ phi(a ^ * x_t)+ \ eta_t $的设置,其中$ \ eta_t $是无偏见的噪音和$ \ phi:\ mathbb {r \ to \ mathbb {r} $是已知的链接功能,满足某些{\ em扩展性属性}。目标是从单个轨迹$ x_1,\ cdots,x_t $的{\ em依赖或相关}样本中学习$ a ^ * $。虽然在线性案例中,在线性案例中的问题很好,而$ \ phi $是身份,但对于非混音系统,最佳错误率,即使是非混音系统,也存在于非线性案例的结果仅适用于混合系统。在这项工作中,我们以多种方式改善了用于学习非线性系统的现有结果:a)我们提供了在没有混合假设的情况下学习非线性动态系统的第一个离线算法,B)我们显着提高了现有的样本复杂性结果混合系统,c)在更难的单遍,流媒体设置中,我们研究了一个具有反向体验的SGD($ \ MATHSF {SGD-RER} $)方法,并证明用于混合系统,它实现了相同的样本复杂性作为我们的离线算法,d)我们通过表示流行的Relu链接功能来证明扩张假设 - 一种与IID的非膨胀而易于学习的链接函数样本 - 任何方法都需要指数呈现许多样本(相对于X_T $的维度)来自动态系统。我们通过验证我们的结果。仿真并证明SGD的天真应用可以高度次优。实际上,我们的工作表明,对于相关的数据,专门用于数据中的依赖结构的专用方法可以显着优于基于标准的SGD方法。
translated by 谷歌翻译
我们考虑通过流算法从单个轨迹估计线性时间不变(LTI)动态系统的问题,这在包括增强学习(RL)和时间序列分析的若干应用中遇到。虽然LTI系统估计问题在{\ em离线}设置中进行了很好地研究,但实际上重要的流媒体/在线设置很少受到关注。如随机梯度下降(SGD)等标准流动方法不太可能起作用,因为流点可以高度相关。在这项工作中,我们提出了一种新颖的流媒体算法,SGD具有反向体验的重播($ \ MATHSF {SGD} - \ MATHSF {RER),这是由RL文献中流行的体验重播(ER)技术的启发。 $ \ mathsf {sgd} - \ mathsf {rer} $划分为小缓冲区,并在存储在单个缓冲区中的数据后向后运行SGD。我们表明该算法精确地解构了依赖结构,并获得了从理论上最佳保证的信息,用于参数误差和预测误差。因此,我们提供了我们的第一至最佳的知识 - 最佳的SGD风格算法,用于使用一阶Oracle的线性系统识别的经典问题。此外,$ \ mathsf {sgd} - \ mathsf {rer} $可以应用于具有已知稀疏模式和非线性动态系统的稀疏LTI识别的更多常规设置。我们的工作表明,数据依赖性结构的知识可以帮助我们在统计上和计算上的算法设计中,这些算法可以“去相关”流样本。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
结构建筑物的坍塌通常被认为是潜在的错失,已经证明了建筑物的损害,导致事故。必须连续监测人类访问受到限制的故障的任何建筑物。通过在计算机视野领域出现的无人机(无人驾驶飞行器),监测任何建筑物并检测这些故障都被视为一种可能性。本文提出了一种新的方法,其中自动无人机遍历目标建筑物,检测建筑物中的任何潜在故障,并定位故障。通过所提供的建筑物的尺寸,产生了建筑物周围的路径。由UAV的板载摄像机捕获的图像通过神经网络系统来确认存在故障。一旦检测到故障,UAV就会向检测到裂缝的相应位置时操纵。使用ROS(机器人操作系统)使用初始化ROS包装器的AIRSIM环境进行仿真,并提供ROS和AIRSIM的集成接口,与UAV一起模拟。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
and widely used information measurement metric, particularly popularized for SSVEP- based Brain-Computer (BCI) interfaces. By combining speed and accuracy into a single-valued parameter, this metric aids in the evaluation and comparison of various target identification algorithms across different BCI communities. To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is therefore required. We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR. We use graph theory to characterize the relationship between the asymmetry of the transition statistics and the ITR gain with the new definition, leading to potential bounds on data rate performance. On two well-known SSVEP datasets, we compared two cutting-edge target identification methods. Results indicate that the induced DM channel asymmetry has a greater impact on the actual perceived ITR than the change in input distribution. Moreover, it is demonstrated that the ITR gain under the new definition is inversely correlated with the asymmetry in the channel transition statistics. Individual input customizations are further shown to yield perceived ITR performance improvements. An algorithm is proposed to find the capacity of binary classification and further discussions are given to extend such results to ensemble techniques.We anticipate that the results of our study will contribute to the characterization of the highly dynamic BCI channel capacities, performance thresholds, and improved BCI stimulus designs for a tighter symbiosis between the human brain and computer systems while enhancing the efficiency of the underlying communication resources.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译